Technical Reference

Tektronix

Tektronix 4000 Series Digital Phosphor Oscilloscopes Specifications and Performance Verification

071-2132-01

This document supports firmware version 2.00 and above for MSO4000 Series instruments and. for DPO4000 Series instruments.

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX, TEK, and TekVPI are registered trademarks of Tektronix, Inc.

Tektronix is an authorized licensee of the CompactFlash® trademark.

Contacting Tektronix

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

General Safety Summary	iii
Specifications	1-1
Performance Verification	2-1
Upgrade the Firmware	
Test Record	
Performance Verification Procedures	2-18

List of Tables

Table 1-1: Analog channel input and vertical specifications	1-1
Table 1-2: Digital channel input specifications, MSO4000 only	1-6
Table 1-3: Horizontal and acquisition system specifications	1-7
Table 1-4: Trigger specifications	1-7
Table 1-5: Display specifications	1-13
Table 1-6: Input/Output port specifications	1-13
Table 1-7: Power source specifications	1-14
Table 1-8: Data storage specifications	1-14
Table 1-9: Environmental specifications	1-14
Table 1-10: Mechanical specifications	1-15
Table 1-11: Safety certification	1-16
Table 1-12: Electromagnetic compatibility (EMC)	1-16
Table 1-13: P6516 Digital Probe specifications	1-17
Table 2-1: Maximum Bandwidth Frequency worksheet	2-23
Table 2-2: Gain Expected worksheet	2-26

Table of Contents

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

To Avoid Fire or Personal Injury Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use.

Connect and Disconnect Properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Ground the Product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

The inputs are not rated for connection to mains or Category II, III, or IV circuits.

Connect the probe reference lead to earth ground only.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Do Not Operate With Suspected Failures. If you suspect there is damage to this product, have it inspected by qualified service personnel.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

Keep Product Surfaces Clean and Dry.

Provide Proper Ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Terms in this Manual

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and Terms on the Product

These terms may appear on the product:

These terms may appear in this manual:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

The following symbols may appear on the product:

Specifications

Specifications

This chapter contains specifications for the DPO4000 and the MSO4000 series oscilloscopes. All specifications are guaranteed unless noted as "typical." Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the \checkmark symbol are checked in *Performance Verification*.

All specifications apply to all DPO4000 and MSO4000 models unless noted otherwise. To meet specifications, two conditions must first be met:

- The oscilloscope must have been operating continuously for twenty minutes within the operating temperature range specified.
- You must perform the Signal Path Compensation (SPC) operation described in the *Tektronix 4000 Series Digital Phosphor Oscilloscopes User Manual* prior to evaluating specifications. If the operating temperature changes by more than 10 °C (18 °F), you must perform the SPC operation again.

Characteristic	Description	
Number of input channels	DPO4032, MSO4032	DPO4104, DPO4054, DPO4034, MSO4104, MSO4054, MSO4034
	2 analog, digitized simultaneously	4 analog, digitized simultaneously
Input coupling	DC, AC, or GND GND coupling approximates ground reference by measuring the CVR output set to GND. The signal being measured on the BNC is not disconnected from the channel's input load.	
Input resistance selection	1 M Ω or 50 Ω DPO4104, MSO4104: Bandwidth is limited to 500 MHz with 1 M Ω impedance selected	
Input impedance, DC coupled	1 M Ω ±1% in parallel with 13 pF ±2 pF 50 Ω ±1% DPO4104, MSO4104: VSWR ≤ 1.5:1 from DC to 1 GHz, typical DPO4054, MSO4054: VSWR ≤ 1.5:1 from DC to 500 MHz, typical DPO4034, DPO4032, MSO4034, MSO4032: VSWR ≤ 1.5:1 from DC to 350 MHz, typical	

Table 1-1: Analog channel input and vertical specifications

Characteristic	Description		
Maximum input voltage (50 Ω)	5 V _{RMS} with peaks $\leq \pm 20$ V (DF $\leq 6.25\%$)		
Maximum input voltage (1 $M\Omega$))0 V _{peak} (DF ≤ 39.2%	BNC, between the center conductor 6), 250 V _{RMS} to 130 kHz derated to
	The maximum	transient withstand v	roltage is ±800 V _{peak} .
🛩 DC Balance	0.2 div with the	input DC-50 Ω coup	pled and 50 Ω terminated
	0.25 div at 2 m ³ terminated	V/div with the input [DC-50 Ω coupled and 50 Ω
	0.5 div at 1 mV/div with the input DC-50 Ω coupled and 50 Ω terminated		
	0.2 div with the	input DC-1 M Ω cou	pled and 50 Ω terminated
	0.3 div at 1 mV terminated	/div with the input D	C-1 M Ω coupled and 50 Ω
Delay between chan- nels, full bandwidth,	≤100 ps betwee DC coupling.	en any two channels	with input impedance set to 50 Ω ,
typical	Note: all settings in the instrument can be manually time aligned using the Probe Deskew function from -100 ns to +100 ns with a resolution of 20 ps.		
Deskew range	-100 ns to +100 ns with a resolution of 20 ps		
Crosstalk (channel isolation), typical	\ge 100:1 at \le 100 MHz and \ge 30:1 at >100 MHz up to the rated bandwidth for any two channels having equal Volts/Div settings		
TekVPI Interface	The probe interface allows installing, powering, compensating, and controlling a wide range of probes offering a variety of features.		
The interface is available on all front panel inputs including A In only provides 1 M Ω input impedance and does not offer 50 the other input channels.			
Total probe power	DPO4032, DPO 50 W	04034, DPO4054, M	SO4032, MSO4034, MSO4054:
	DPO4104, MSO4104: 50 W with a derating of 0.8 W/°C for ambient temperatures \ge 25 °C		
Probe power per	Voltage	Max Amperage	Voltage Tolerance
channel	5 V	50 mA (250 mW)	±5%
	12 V	2 A (24 W)	±10%

Table 1-1: Analog channel input and vertical specifications (Cont.)

Characteristic	Description			
Number of digitized	8 bits			
bits	Displayed vertically with 25 digitization levels (DL) per division, 10.24 divisions dynamic range.			
	voltage level	breviation for "digitiza change that can be re also known as the LS	esolved by an 8-bit A	A-D Converter.
Sensitivity range	1 MΩ		50 Ω	
(coarse)	1 mV/div to 1 sequence	0 V/div in a 1-2-5	1 mV/div to 1 V/di sequence	iv in a 1-2-5
Sensitivity range (fine)		V/div: <-50% to >+5 0% to 0%, 1 MΩ	0% of selected settin	ng, 1 M Ω
		1 mV/div to 500 mV/div: <-50% to >+50% of selected setting, 50 Ω 1 V/div: <-50% to 0%, 50 Ω		
	Allows continuous adjustment from 1 mV/div to 10 V/div, 1 M Ω . Allows continuous adjustment from 1 mV/div to 1 V/div, 50 Ω .			
Sensitivity resolution (fine), typical	≤ 1% of current setting			
Position range	±5 divisions			
$ u$ Analog bandwidth, 50 Ω	bandwidth se	ted below are for amb lection set to FULL. F 1% for each °C abov	Reduce the upper ba	
	Instrument	5 mV/div to 1 V/div	2 mV/div to 4.98 mV/div	1 mV/div to 1.99 mV/div
	DPO4104, MSO4104	DC to 1 GHz	DC to 350 MHz	DC to 200 MHz
	DPO4054, MSO4054	DC to 500 MHz	DC to 350 MHz	DC to 200 MHz
	Instrument	2 mV/div to 1 V/div		1 mV/div to 1.99 V/div
	DPO4034, MSO4034	DC to 350 MHz		DC to 200 MHz
	DPO4032, MSO4032	DC to 350 MHz		DC to 200 MHz

Table 1-1: Analog channel input and vertical specifications (Cont.)

Characteristic	Description			
Analog bandwidth, 1 $M\Omega$ with P6139A 10X Probe, typical	bandwidth sele	ed below are for amb ection set to FULL. Re % for each °C above	educe the upper ba	
	Instrument	50 mV/div to 100 V/div	20 mV/div to 49.8 mV/div	10 mV/div to 19.9 mV/div
	DPO4104, MSO4104	DC to 500 MHz	DC to 300 MHz	DC to 175 MHz
	DPO4054, MSO4054	DC to 500 MHz	DC to 300 MHz	DC to 175 MHz
	DPO4034, MSO4034	DC to 350 MHz	DC to 300 MHz	DC to 175 MHz
	DPO4032, MSO4032	DC to 350 MHz	DC to 300 MHz	DC to 175 MHz
Calculated rise time, typical	oscilloscope. T	calculated by measu The formula accounts Idependent of the rise	for the rise time co	ntribution of the
	Instrument	50 Ω: 1 mV/div to 1.99 mV/div	50 Ω: 2 mV/div to 4.99 mV/div	50 Ω: 5 mV/ div to 1 V/div
	DPO4104, MSO4104	1.75 ns	778 ps	350 ps
	DPO4054, MSO4054	1.75 ns	778 ps	700 ps
	DPO4034, MSO4034	1.75 ns	1 ns	1 ns
	DPO4032, MSO4032	1.75 ns	1 ns	1 ns
	Instrument	1 MΩ (P6139A probe): 10 mV/div to 19.9 mV/div	1 MΩ (P6139A probe): 20 mV/di to 100 V/div	
	DPO4104, MSO4104	1 ns	700 ps	
	DPO4054, MSO4054	1 ns	700 ps	
	DPO4034, MSO4034	1 ns	1 ns	
	DPO4032, MSO4032	1 ns	1 ns	
Analog bandwidth selections	20 MHz, 250 N	/Hz and Full (all mod	lels)	

Table 1-1: Analog channel input and vertical specifications (Cont.)

Characteristic	Description		
Lower frequency limit,	wer frequency limit, coupled, typical $<$ 10 Hz when AC to 1 M Ω coupled The AC coupled lower frequency limits are reduced by a factor of when 10X passive probes are used.		
AC coupled, typical			
Upper frequency limit, 250 MHz bandwidth limited, typical	250 MHz, ±20% (all models)		
Upper frequency limit, 20 MHz bandwidth limited, typical	20 MHz, ±20% (all models)		
DC gain accuracy	For 1 M Ω path:	For 50 Ω path:	
	$\pm 1.5\%$, derated at 0.100%/°C above 30 °C	$\pm 1.5\%,$ derated at 0.050%/°C above 30 °C	
	±3.0% Variable Gain, derated at 0.100%/°C above 30 °C	$\pm 3.0\%$ Variable Gain, derated at 0.050%/°C above 30 °C	
DC voltage measure- ment accuracy	Measurement type	DC Accuracy (in volts)	
Sample acquisition mode, typical	Any sample	±[DC gain accuracy × reading + (offset - position) + Offset Accuracy +0.15 div + 0.6 mV]	
	Delta volts between any two samples acquired with the same oscilloscope setup and ambient conditions	\pm [DC gain accuracy \times reading + 0.15 div + 1.2 mV]	
	Note: Offset, position, and the cons to volts by multiplying by the approp		

Table 1-1: Analog channel input and vertical specifications (Cont.)

Characteristic	Description				
Average acquisition mode	Average of \geq 16 waveforms \pm [DC gain accuracy \times readin (offset - position) + Offset Accuracy + 0.1 div]				
	Delta Volts between any two averages of ≥16 waveforms acquired with the same oscillo- scope setup and ambient condi- tions	\pm [DC gain accuracy \times reading + 0.05 div]			
		Note: Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/div term.			
	The basic accuracy specification applies directly to any sample and to the following measurements: High, Low, Max, Min, Mean, Cycle Mean, RMS, and Cycle RMS. The delta volt accuracy specification applies to subtractive calculations involving two of these measurements.				
	The delta volts (difference voltage) ac the following measurements: Positive Pk-Pk, and Amplitude.				
Offset ranges	Volts/div setting Offset range				
		1 M Ω input	50 Ω input		
	1 mV/div to 50 mV/div	±1 V	±1 V		
	50.5 mV/div to 99.5 mV/div	±0.5 V	±0.5 V		
	100 mV/div to 500 mV/div	±10 V	±10 V		
	505 mV/div to 995 mV/div	±5 V	±5 V		
	1 V/div to 5 V/div ¹	±100 V	±5 V		
	5.05 V/div to 10 V/div ¹	±50 V	Not applicable		
	Input Signal cannot exceed Max Input Voltage for the 50 Ω input path. Refer to the Max Input Voltage specification for more information.				
Offset accuracy	\pm [0.005 \times offset - position + DC Balance]				
	Note: Both the position and constant offset term must be converted to volts by multiplying by the appropriate volts/div term.				

Table 1-1: Analog channel input and vertical specifications (Cont.)

¹ For 50 Ω path, 1 V/div is the maximum vertical setting.

Table 1-2: Digital channel input specifications, MSO4000 only	
---	--

Characteristic	Description
Threshold voltage range	-2 V to +5 V
Digital threshold accuracy	\pm [100 mV + 3% of the threshold setting after calibration]
Timing resolution	2 ns for the main memory and 60.6 ps for MagniVu memory

Characteristic	Description
✓ Long-term sample rate and delay time accuracy	± 5 ppm over any ≥ 1 ms time interval
Seconds/Division range	DPO4104, MSO4104: 400 ps/div to 1,000 sec/div in a 1-2-4 sequence DPO4054, DPO4034, DPO4032, MSO4054, MSO4034, MSO4032: 1 ns/div to 1,000 sec/div
Peak Detect or Enve-	Minimum pulse width
lope mode pulse response, typical	DPO4104, MSO4104: > 200 ps DPO4054, DPO4034, DPO4032, MSO4054, MSO4034, MSO4032: > 400 ps
Sample-rate range	DPO4104, MSO4104: 5 GS/s-0.1 S/s DPO4054, DPO4034, DPO4032, MSO4054, MSO4034, MSO4032: 2.5 GS/s-0.1 S/s
Record length range	10 M, 1 M, 100 k, 10 k, 1 k
Maximum update rate	Maximum triggered acquisition rate: 35,000 wfm/s
Aperture Uncertainty, typical	\leq (3 ps + 0.1 ppm * record duration) _{RMS} , for records having duration \leq 1 minute
Number of Wave- forms for Average Acquisition Mode	2 to 512 waveforms Default of 16 waveforms

Table 1-3: Horizontal and acquisition system specifications

Table 1-4: Trigger specifications

Characteristic	Description	
Aux In (External) trig- ger maximum input voltage	The maximum input voltage at the BNC, between center conductor and shield, is 400 V _{peak} (DF \leq 39.2%), 250 V _{RMS} to 2 MHz derated to 5 V _{RMS} @ 500 MHz.	
	The maximum transient withstand voltage is $\pm 800 \text{ V}_{\text{peak}}$.	
Aux In (External) trig- ger input impedance, typical	1 M Ω $\pm 1\%$ in parallel with 13 pF ± 2 pF	
Aux In (External) trig- ger bandwidth, typical	250 MHz ±20%	
Trigger bandwidth, Edge, Pulse, and Logic, typical	DPO4104, MSO4104: 1 GHz DPO4054, MSO4054: 500 MHz DPO4034, DPO4032, MSO4034, MSO4032: 350 MHz	

Characteristic	Description	Description		
Time accuracy for Pulse, Glitch, Time- out, or Width trigger- ing	Time range	Accuracy		
	1 ns to 500 ns	±(20% of setting + 0.5 ns)		
	520 ns to 1 s	±(0.01% of setting + 100 ns)		
Edge-type trigger	Trigger Source	Sensitivity		
sensitivity, DC coupled, typical	Any input channel	0.40 div from DC to 50 MHz, increasing to 1 div at oscilloscope bandwidth		
	Aux in (External)	200 mV from DC to 50 MHz, increasing to 500 mV at 250 MHz		
	Line	Fixed		
Edge trigger	Trigger Coupling	Typical Sensitivity		
sensitivity, not DC coupled, typical	NOISE REJ	2.5 times the DC-coupled limits		
соцрец, туріса	HF REJ	1.5 times the DC-coupled limit from DC to 50 kHz. Attenuates signals above 50 kHz		
	LF REJ	1.5 times the DC-coupled limits for frequencies above 50 kHz. Attenuates signals below 50 kHz		
Trigger level ranges	Source	Sensitivity		
	Any input channel	±8 divisions from center of screen, ±8 divisions from 0 V when vertical LF reject trigger coupling is selected		
	Aux In (External)	±8 V		
	Line	Not applicable		
	The line trigger level is fixed at about 50% of the line voltage.			
	This specification applies to logic and pulse thresholds.			
Lowest frequency for successful operation of "Set Level to 50%" function, typical	45 Hz			
Trigger level	For signals having rise and fall times \ge 10 ns, the limits are as follows:			
accuracy, DC coupled typical	Source	Range		
,ı	Any channel	±0.20 divisions		
	Aux In (external trigger)	±(10% of setting + 25 mV)		
	Line	Not applicable		
Trigger holdoff range	20 ns minimum to 8 s maximum			

Table 1-4: Trigger specifications (Cont.)

Characteristic	Description				
Video-type trigger	The limits for both delayed and main trigger are as follows:				
sensitivity, typical	Source		Sensitivity	Sensitivity	
	Any input channel		0.6 to 2.5 divisions tip	0.6 to 2.5 divisions of video sync tip	
	Aux In (Extern	al)		Video not supported through Aux In (External) input	
Video-type trigger formats and field rates	Triggers from negative sync composite video, field 1 or field 2 for interlaced systems, on any field, specific line, or any line for interlaced or non-interlaced systems. Supported systems include NTSC, PAL, and SECAM.				
Logic-type or logic qualified trigger or events-delay sensitivi- ties, DC coupled, typical	1.0 division from DC to maximum bandwidth				
Pulse-type runt trigger sensitivities, typical	1.0 division from DC to maximum bandwidth				
Pulse-type trigger width and glitch sensi- tivities, typical	1.0 division				
Logic-type triggering,	For all vertical settings, the minimums are:				
minimum logic or rearm time, typical	Trigger type	Minimum pulse width	Minimum re-arm time	Minimum time between channels ¹	
	Logic	Not applicable	2 ns	1 ns	
	Time Quali- fied Logic	4 ns	2 ns	1 ns	
	from more than	one channel must exist etween a main and delay	rs to the length of time a to be recognized. For ev ed event that will be reco	ents, the time is th	
Minimum clock pulse	For all vertical settings, the minimums are:				
widths for setup/hold time violation trigger, typical	Minimum pulse width, clock active ²		Minimum pulse width, clock inactive ²		
	User hold time + 2.5 ns ³ 2 ns				
	through the Defin	ne Inputs lower-bezel bu . An inactive pulse wid	clock pulse from its acti itton and the Clock Edge th is the width of the pul	side-bezel menu) t	
		me is the number select old Time side-bezel me	ed by the user through th enu.	e Times lower-bezo	

Table 1-4:	Trigger	specifications	(Cont.)
------------	---------	----------------	---------

Characteristic	Description		
Setup/hold violation trigger, setup and hold time ranges,	Feature	Min	Мах
	Setup time	0 ns	8 s
DPO4000 only	Hold time	4 ns	8 s
	Setup + Hold time	4 ns	16 s
MSO4000 only	Feature	Min	Мах
	Setup time	-0.5 ns	1.0 ms
	Hold time	1 ns	1.0 ms
	Setup + Hold time	0.5 ns	2.0 ms
	Input coupling of	on clock and data ch	annels must be the same.
	For Setup time, clock.	positive numbers m	ean a data transition before the
	For Hold time, positive numbers mean a data transition after the clock edge.		
	Setup + Hold time is the algebraic sum of the Setup Time and the Hold Time programmed by the user.		
Pulse type trigger, minimum pulse,	Pulse class	Minimum pulse width	Minimum rearm time
rearm time, minimum transition time	Glitch	4 ns	2 ns + 5% of glitch width setting
	Runt	4 ns	2 ns
	Time-qualified runt	4 ns	8.5 ns + 5% of width setting
	Width	4 ns	2 ns + 5% of width upper limit setting
	Slew rate	4 ns	8.5 ns + 5% of delta time setting
	For the trigger class width and the trigger class runt, the pulse width refers to the width of the pulse being measured. The rearm time refers to the time between pulses.		
	being measured		oulse width refers to the delta time fers to the time it takes the signal to in.
Transition time trig- ger, delta time range	4 ns to 8 s		
Time range for glitch, pulse width, timeout, time-qualified runt, or time-qualified window triggering	4 ns to 8 s		

Table 1-4: Trigger specifications (Cont.)

Characteristic	Description
B trigger after events, minimum pulse width and maximum event frequency, typical	4 ns, 500 MHz
B trigger, minimum time between arm and trigger, typical	4 nsFor trigger after time, this is the time between the end of the time period and the B trigger event.For trigger after events, this is the time between the last A trigger event and the first B trigger event.
B trigger after time, time range	4 ns to 8 seconds
B trigger after events, event range	1 to 9,999,999
Maximum serial trigger bits	128 bits

 Table 1-4: Trigger specifications (Cont.)

Characteristic	Description	
Standard Parallel bus interface triggering (MSO4000 only)	Data Trigger: 1 to 20 bits of user specified data on 4-channel models and 1 to 18 bits of user specified data on 2-channel models.	
Standard serial bus	l ² C	
interface triggering	Address Triggering: 7 and 10 bit user specified address, as well as General Call, START byte, HS-mode, EEPROM, and CBUS	
	Data Trigger: 1 to 12 bytes of user specified data	
	Trigger On: Start, Repeated Start, Stop, Missing Ack, Data, or Address and Data	
	Maximum Data Rate: 10 Mb/s	
	SPI	
	Data Trigger: 1 to 16 bytes of user specified data	
	Trigger On: SS Active, MOSI, MISO, or MOSI and MISO	
	Maximum Data Rate: 10 Mb/s	
	CAN	
	Data Trigger: 1 to 8 bytes of user specified data, including qualifiers of equal to (=), not equal to (<>), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)	
	Trigger On: Start of Frame, Type of Frame, Identifier, Data, Identifier and Data, End of Frame, or Missing Ack	
	Frame Type: Data, Remote, Error, Overload	
	Identifier: Standard (11 bit) and Extended (29 bit) identifiers	
	Maximum Data Rate: 1 Mb/s	
	RS-232	
	Trigger On: Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet, Tx Data, or Rx Data	
	Maximum Data Rate: 128 Kb/s	

Table 1-4: Trigger specifications (Cont.)

Table 1-5: Display specifications

Characteristic	Description	
Display type	Display area: 210.4 mm (8.28 inches) (H) x 157.8 mm (6.21 inches) (V), 264 mm (10.4 inches) diagonal, 6-bit RGB full color, XGA (1024 x 768) TFT liquid crystal display (LCD).	
Display resolution	1000 horizontal by 651 vertical displayed pixels	
Luminance, typical	Minimum 240 cd/m ² , typical 300 cd/m ²	
Waveform display color scale	The TFT display can support up to 262,144 colors. A subset of these colors are used for the oscilloscope display, all of which are fixed colors and not changeable by the customer.	

Table 1-6: Input/Output port specifications

Characteristic	Description	
Ethernet interface	Standard on all models: 10/100 Mb/s	
USB interface	1 Device and 3 Host connectors (al	l models)
GPIB interface	Available as an optional accessory that connects to USB Device and USB Host port. with the TEK-USB-488 GPIB to USB Adapter.	
	Control interface is incorporated in	the instrument user interface.
Video signal output	A 15 pin, XGA RGB-type connector	
Probe compensator output voltage and frequency, typical	Output voltage: 0 V to 2.5 V \pm 1% behind 1 k Ω \pm 2% Frequency: 1 kHz \pm 5%	
Trigger (Auxiliary) output (AUX OUT)	LOW TRUE; LOW to HIGH transition indicates that the trigger occurred. The logic levels are:	
	Characteristic	Limits
	Vout (HI)	≥2.5 V open circuit; ≥1.0 V into a 50 Ω load to ground
	Vout (LO)	≤0.7 V into a load of ≤4 mA; ≤0.25 V into a 50 Ω load to ground

Characteristic	Description
Source voltage	100 V to 240 V ±10%
Source frequency	(90 V to 264 V) 47 Hz to 66 Hz (100 V to 132 V) 360 Hz to 440 Hz
Fuse rating	T6.3AH, 250 V
	The fuse is not customer replaceable

Table 1-7: Power source specifications

Table 1-8: Data storage specifications

Characteristic	Description		
Nonvolatile memory retention time, typical	No time limit for front-panel settings, saved waveforms, setups, and calibration constants		
Real-time clock	A programmable clock providing time in years, months, days, hours, minutes, and seconds		
Compact Flash card	Used to store re	eference waveforr	ns and front-panel settings
	Supply Voltage	Form factor	Data bits
	Switched 3.3 V only	Type 1 only	16 bit data transfer

Table 1-9: Environmental specifications

Characteristic	Description
Temperature	Operating: 0 °C to +50 °C (+32 °F to +122 °F)
	Nonoperating: -20 °C to +60 °C (-4 °F to +140 °F)
Humidity	Operating:
	High: 10% to 60% relative humidity, 40 $^\circ C$ to 50 $^\circ C$ (104 $^\circ F$ to 122 $^\circ F$) Low: 10% to 90% relative humidity, 0 $^\circ C$ to 40 $^\circ C$ (32 $^\circ F$ to 104 $^\circ F$)
	Nonoperating:
	High: 5% to 60% relative humidity, 40 $^\circ C$ to 60 $^\circ C$ (104 $^\circ F$ to 140 $^\circ F$ Low: 5% to 90% relative humidity, 0 $^\circ C$ to 40 $^\circ C$ 32 $^\circ F$ to 104 $^\circ F$)
Pollution Degree	Pollution Degree 2, indoor use only

Characteristic	Description	
Altitude	Operating: 3,000 m (9,843 ft)	
	Nonoperating: 12,000 m (39,370 ft)	
Random vibration	Operating: 0.31 g _{RMS} from 5 Hz to 500 Hz, 10 minutes on each axis, 3 axes	
	Nonoperating: 2.46 g _{RMS} from 5 Hz to 500 Hz, 10 minutes on each axis, 3 axes (30 minutes total).	

 Table 1-9: Environmental specifications (Cont.)

Characteristic	Description			
Dimensions	Nominal, non-rack mount: Height: 229 mm (9.0 in), including feet: 272 mm (10.7 in), including vertical handle and feet			
	Width: 439 mm (17.3 in) from handle hub to handle hub			
	Depth: 137 mm (5.4 in) from feet to front of knobs 145 mm (5.7 in) from feet to front of front cover			
	Nominal, rack mount (5U rack sizes): Height: 218 mm (8.6 in) Width: 488 mm (19.2 in) from outside of handle to outside of handle Depth: 559 mm (22.0 in) from outside of handle to back of slide			
Weight	5.1 kg (11.3 lbs), stand-alone instrument, without front cover 8.7 kg (19.1 lbs), instrument with rack mount, without front cover 9.5 kg (21.0 lbs), when packaged for domestic shipment and without rack mount			
Clearance Requirements	The clearance requirement for adequate cooling is: 50.8 mm (2 in) on the left side (when looking at the front of the instrument) and on the rear of the unit			

Table 1-11: Safety certification

Characteristic	Description
Safety certification	Listed UL61010-1: 2004, CAN/CSA-C22.2 No. 61010.1: 2004; Complies with EN61010-1: 2001, Complies with the Low-Voltage Directive 73/23/ECC for Product Safety

Table 1-12: Electromagnetic compatibility (EMC)

European Union	EC Council EMC Directive 89/336/EEC, amended by 93/68/EEC;
	Demonstrated using:
	EN 61326/A2 Electrical equipment for measurement, control, and laboratory use. Annex $D^{1,2}$
	Emissions EN 61326, Class A
	Immunity IEC 61000-4-2 IEC 61000-4-3 ³ IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 ⁴ IEC 61000-4-11
	EN 61000-3-2 EN 61000-3-3
Australia	EMC Framework, demonstrated per Emission Standard AS/NZS 2064 (Industrial, Scientific, and Medical Equipment).

¹ Emissions that exceed the levels required by this standard may occur when this equipment is connected to a test object.

- ² Use Low-EMI Shielded cables to maintain compliance.
- ³ The increase in trace noise, while subjected to the test field (3 V/m over the frequency range 80 MHz to 1 GHz with 80% amplitude modulation at 1 kHz), is not to exceed 8 major divisions peak-to-peak. Ambient fields may induce triggering when the trigger threshold is offset less than 4 minor divisions from ground reference.
- ⁴ The increase in trace noise, while subjected to the injected 3 V test signal, is not to exceed 2 major divisions peak-to-peak. Ambient fields may induce triggering when the trigger threshold is offset less than 1 major division from ground reference.

Characteristic	Description
Number of channels	16
Threshold accuracy	\pm (100 mV + 3% of threshold)
Maximum signal swing	6.0 V peak-to-peak centered around the threshold voltage
Minimum signal swing	500 mV peak-to-peak
Input resistance	20 kΩ
Input capacitance	3.0 pF typical
Temperature	Operating: 0 °C to +50 °C (+32 °F to +122 °F)
	Nonoperating: -55 °C to +75 °C (-67 °F to +167 °F)
Altitude	Operating: 4,500 m (15,000 ft)
	Nonoperating: 15,000 m (50,000 ft)
Pollution Degree	2, indoor use only
Humidity	10% to 95% relative humidity

Table 1-13: P6516 Digital Probe specifications

Specifications

Performance Verification

Performance Verification

This chapter contains performance verification procedures for the specifications marked with the ν symbol. The following equipment, or a suitable equivalent, is required to complete these procedures.

Description	Minimum requirements	Examples
DC voltage source	3 mV to 4 V, $\pm 0.1\%$ accuracy	Fluke 9500
Leveled sine wave generator	50 kHz to 1000 MHz, ±4% amplitude accuracy	Oscilloscope Calibrator with a 9510 Output Module
Time mark generator	80 ms period, ±1 ppm accuracy, rise time < 50 ns	An appropriate BNC-to-0.1 inch pin adapter between the Fluke 9500 and P6516 probe
Digital Multimeter (DMM)	0.1% accuracy or better	
One 50 Ω BNC cable	Male-to-male connectors	Tektronix part number 012-0057-01

You may need additional cables and adapters, depending on the actual test equipment you use.

These procedures cover all DPO4000 and MSO4000 models. Please disregard checks that do not apply to the specific model you are testing.

Photocopy the test record on the following pages and use it to record the performance test results for your oscilloscope.

NOTE. Completion of the performance verification procedure does not update the stored time and date of the latest successful adjustment. The date and time are updated only when the adjustment procedures in the service manual are successfully completed.

The performance verification procedures verify the performance of your instrument. They do not adjust your instrument. If your instrument fails any of the performance verification tests, you should perform the factory adjustment procedures as described in the *Tektronix 4000 Series Service Manual*.

Upgrade the Firmware

For the best functionality, you can upgrade the oscilloscope firmware. To upgrade the firmware, follow these steps:

- 1. Open up a Web browser and go to www.tektronix.com/software. Use the Software and Firmware Finder to locate the most recent firmware upgrade.
- 2. Download the latest firmware for your oscilloscope on your PC.
- **3.** Unzip the files and copy the "firmware.img" file into the root folder of a USB flash drive.
- 4. Power off your oscilloscope.
- **5.** Insert the USB flash drive into a USB Host port on the front or back of the oscilloscope.
- **6.** Power on the oscilloscope. The oscilloscope automatically recognizes the replacement firmware and installs it.

If the instrument does not install the firmware, rerun the procedure. If the problem continues, contact qualified service personnel.

NOTE. Do not power off the oscilloscope or remove the USB flash drive until the oscilloscope finishes installing the firmware.

The oscilloscope displays a message when the installation is complete.

- 7. Power off the oscilloscope and remove the USB flash drive.
- 8. Power on the oscilloscope.
- 9. Push the Utility front-panel button.
- 10. Push the Utility Page lower-bezel button.
- 11. Turn multipurpose knob a and select Config.
- **12.** Push the **Version** lower-bezel button. The oscilloscope displays the firmware version number.
- **13.** Confirm that the version number matches that of the new firmware.

Test Record

Model number	Serial number	Procedure performed by	Date

Test	Passed	Failed
Self Test		

Input Impedance				
Performance checks	Vertical scale	Low limit	Test result	High limit
All models:		•		
Channel 1	10 mV/div	990 kΩ		1.01 MΩ
Input Impedance, 1 MΩ	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 1 Input Impedance, 50 Ω	10 mV/div	49.5 Ω		50.5 Ω
	100 mV/div	49.5 Ω		50.5 Ω
Channel 2	10 mV/div	990 kΩ		1.01 MΩ
Input Impedance, 1 M Ω	100 mV/div	990 kΩ		1.01 MΩ
	1 V/div	990 kΩ		1.01 MΩ
Channel 2 Input Impedance, 50 Ω	10 mV/div	49.5 Ω		50.5 Ω
	100 mV/div	49.5 Ω		50.5 Ω
DPO4104, DPO40	54, DPO4034, MS	04104, MSO405	4, MSO4034:	·
Channel 3	10 mV/div	990 kΩ		1.01 MΩ

Channel 3 Input Impedance, 1 MΩ	10 mV/div	990 kΩ	1.01 MΩ
	100 mV/div	990 kΩ	1.01 MΩ
	1 V/div	990 kΩ	1.01 MΩ
Channel 3 Input Impedance,	10 mV/div	49.5 Ω	50.5 Ω
50Ω	100 mV/div	49.5 Ω	50.5 Ω
Channel 4	10 mV/div	990 kΩ	1.01 MΩ
Input Impedance, 1 MΩ	100 mV/div	990 kΩ	1.01 MΩ
	1 V/div	990 kΩ	1.01 MΩ
Channel 4,	10 mV/div	49.5 Ω	50.5 Ω
Input Impedance, 50 Ω	100 mV/div	49.5 Ω	50.5 Ω

DC Balance				
Performance checks	Vertical scale	Low limit	Test result	High limit
All models:				
Channel 1	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω,	2 mV/div	-0.5 mV		0.5 mV
20 MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 1	1 mV/div ¹	-0.3 mV		0.3 mV
OC Balance MΩ,	100 mV/div	-20 mV		20 mV
0 MHz BW	1 V/div	-200 mV		200 mV
hannel 1	1 mV/div	-0.5 mV		0.5 mV
C Balance, 0 Ω,	2 mV/div	-0.5 mV		0.5 mV
50 MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
hannel 1	1 mV/div ¹	-0.3 mV		0.3 mV
C Balance MΩ,	100 mV/div	-20 mV		20 mV
50 MHz BW	1 V/div	-200 mV		200 mV
hannel 1	1 mV/div	-0.5 mV		0.5 mV
C Balance,) Ω,	2 mV/div	-0.5 mV		0.5 mV
ull BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
hannel 1	1 mV/div ¹	-0.3 mV		0.3 mV
C Balance MΩ,	100 mV/div	-20 mV		20 mV
ull BW	1 V/div	-200 mV		200 mV
hannel 2	1 mV/div	-0.5 mV		0.5 mV
C Balance,) Ω,	2 mV/div	-0.5 mV		0.5 mV
) MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
hannel 2	1 mV/div ¹	-0.3 mV		0.3 mV
C Balance MΩ,	100 mV/div	-20 mV		20 mV
0 MHz BW	1 V/div	-200 mV		200 mV

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 2	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω,	2 mV/div	-0.5 mV		0.5 mV
250 MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 2	1 mV/div ¹	-0.3 mV		0.3 mV
DC Balance 1 MΩ,	100 mV/div	-20 mV		20 mV
250 MHz BW	1 V/div	-200 mV		200 mV
Channel 2	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω,	2 mV/div	-0.5 mV		0.5 mV
Full BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 2	1 mV/div ¹	-0.3 mV		0.3 mV
DC Balance 1 MΩ,	100 mV/div	-20 mV		20 mV
Full BW	1 V/div	-200 mV		200 mV
DPO4104, DPO4	4054, DPO4034, MS	04104, MSO405	4, MSO4034:	
Channel 3	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω,	2 mV/div	-0.5 mV		0.5 mV
20 MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 3	1 mV/div ¹	-0.3 mV		0.3 mV
DC Balance 1 MΩ,	100 mV/div	-20 mV		20 mV
20 MHz BW	1 V/div	-200 mV		200 mV
Channel 3	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω ,	2 mV/div	-0.5 mV		0.5 mV
250 MHz BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 3	1 mV/div ¹	-0.3 mV		0.3 mV
DC Balance 1 MΩ,	100 mV/div	-20 mV		20 mV
250 MHz BW	1 V/div	-200 mV		200 mV

Performance				
checks	Vertical scale	Low limit	Test result	High limit
Channel 3 DC Balance, 50 Ω, Full BW	1 mV/div	-0.5 mV		0.5 mV
	2 mV/div	-0.5 mV		0.5 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 3 DC Balance 1 M Ω , Full BW	1 mV/div ¹	-0.3 mV		0.3 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 4	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω, 20 MHz BW	2 mV/div	-0.5 mV		0.5 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 4	1 mV/div ¹	-0.3 mV		0.3 mV
DC Balance $1 M\Omega$,	100 mV/div	-20 mV		20 mV
20 MHz BW	1 V/div	-200 mV		200 mV
Channel 4	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω, 250 MHz BW	2 mV/div	-0.5 mV		0.5 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 4 DC Balance 1 MΩ, 250 MHz BW	1 mV/div ¹	-0.3 mV		0.3 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 4	1 mV/div	-0.5 mV		0.5 mV
DC Balance, 50 Ω ,	2 mV/div	-0.5 mV		0.5 mV
Full BW	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV
Channel 4 DC Balance 1 MΩ, Full BW	1 mV/div ¹	-0.3 mV		0.3 mV
	100 mV/div	-20 mV		20 mV
	1 V/div	-200 mV		200 mV

¹ Immediately after calibration, the specification is -0.2 div to 0.20 div. For performance verification testing, the specification is -0.3 to 0.3 div.

Band- width at Channel	Imped- ance	Vertical scale	V _{in-pp}	V _{bw-pp}	Limit	Test result <i>Gain</i> = <i>V</i> _{bw} -pp/ <i>V</i> _{in} -pp
All models	6:					
1	50 Ω	5 mV/div			≥ 0.707	
1	50 Ω	2 mV/div			≥ 0.707	
1	50 Ω	1 mV/div			≥ 0.707	
1	1 MΩ	5 mV/div			≥ 0.707	
1	1 MΩ	2 mV/div			≥ 0.707	
1	1 MΩ	1 mV/div			≥ 0.707	
2	50 Ω	5 mV/div			≥ 0.707	
2	50 Ω	2 mV/div			≥ 0.707	
2	50 Ω	1 mV/div			≥ 0.707	
2	1 MΩ	5 mV/div			≥ 0.707	
2	1 MΩ	2 mV/div			≥ 0.707	
2	1 MΩ	1 mV/div			≥ 0.707	
DPO4104,	DPO4054, [DPO4034, MS	04104, MS	04054, MSO4	1034:	
3	50 Ω	5 mV/div			≥ 0.707	
3	50 Ω	2 mV/div			≥ 0.707	
3	50 Ω	1 mV/div			≥ 0.707	
3	1 MΩ	5 mV/div			≥ 0.707	
3	1 MΩ	2 mV/div			≥ 0.707	
3	1 MΩ	1 mV/div			≥ 0.707	
4	50 Ω	5 mV/div			≥ 0.707	
4	50 Ω	2 mV/div			≥ 0.707	
4	50 Ω	1 mV/div			≥ 0.707	
4	1 MΩ	5 mV/div			≥ 0.707	
4	1 MΩ	2 mV/div			≥ 0.707	
4	1 MΩ	1 mV/div			≥ 0.707	

DC Gain Accuracy						
Performance checks	Vertical scale	Low limit	Test result	High limit		
All models:						
Channel 1 DC Gain Accuracy, 0 V offset, 0 V vertical position, 20 MHz BW, 50 Ω	1 mV/div	-1.5%		1.5%		
	2 mV/div	-1.5%		1.5%		
	4.98 mV	-3.0%		3.0%		
	5 mV/div	-1.5%		1.5%		
	10 mV/div	-1.5%		1.5%		
	20 mV/div	-1.5%		1.5%		
	49.8 mV	-3.0%		3.0%		
	50 mV/div	-1.5%		1.5%		
	100 mV/div	-1.5%		1.5%		
	200 mV/div	-1.5%		1.5%		
	500 mV/div	-1.5%		1.5%		
	1.0 V/div	-1.5%		1.5%		
Channel 1	1 mV/div	-1.5%		1.5%		
DC Gain Accuracy, 0 V offset, 0 V vertical position, 20 MHz BW, 1 MΩ	2 mV/div	-1.5%		1.5%		
	4.98 mV/div	-3.0%		3.0%		
	5 mV/div	-1.5%		1.5%		
	10 mV/div	-1.5%		1.5%		
	20 mV/div	-1.5%		1.5%		
	49.8 mV	-3.0%		3.0%		
	50 mV/div	-1.5%		1.5%		
	100 mV/div	-1.5%		1.5%		
	200 mV/div	-1.5%		1.5%		
	500 mV/div	-1.5%		1.5%		
	1 V/div	-1.5%		1.5%		

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 2	1 mV/div	-1.5%		1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
0 V offset,	4.98 mV	-3.0%		3.0%
0 V vertical position,	5 mV/div	-1.5%		1.5%
20 MHz BW,	10 mV/div	-1.5%		1.5%
50 Ω	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1.0 V/div	-1.5%		1.5%
Channel 2	1 mV/div	-1.5%		1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
0 V offset,	4.98 mV/div	-3.0%		3.0%
0 V vertical position,	5 mV/div	-1.5%		1.5%
20 MHz BW,	10 mV/div	-1.5%		1.5%
1 MΩ	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1 V/div	-1.5%		1.5%

Performance checks	Vertical scale	Low limit	Test result	High limit
DPO4104, DPO4	4054, DPO4034, MS			
Channel 3	1 mV/div	-1.5%	,	1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
) V offset,	4.98 mV	-3.0%		3.0%
0 V vertical position,	5 mV/div	-1.5%		1.5%
0 MHz BW,	10 mV/div	-1.5%		1.5%
50 Ω	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1.0 V/div	-1.5%		1.5%
Channel 3	1 mV/div	-1.5%		1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
) V offset,	4.98 mV/div	-3.0%		3.0%
V vertical oosition,	5 mV/div	-1.5%		1.5%
20 MHz BW,	10 mV/div	-1.5%		1.5%
MΩ	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1 V/div	-1.5%		1.5%

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 4	1 mV/div	-1.5%		1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
0 V offset,	4.98 mV	-3.0%		3.0%
0 V vertical position,	5 mV/div	-1.5%		1.5%
20 MHz BW,	10 mV/div	-1.5%		1.5%
50 Ω	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1.0 V/div	-1.5%		1.5%
Channel 4	1 mV/div	-1.5%		1.5%
DC Gain Accuracy,	2 mV/div	-1.5%		1.5%
0 V offset,	4.98 mV/div	-3.0%		3.0%
0 V vertical position,	5 mV/div	-1.5%		1.5%
20 MHz BW,	10 mV/div	-1.5%		1.5%
1 MΩ	20 mV/div	-1.5%		1.5%
	49.8 mV	-3.0%		3.0%
	50 mV/div	-1.5%		1.5%
	100 mV/div	-1.5%		1.5%
	200 mV/div	-1.5%		1.5%
	500 mV/div	-1.5%		1.5%
	1 V/div	-1.5%		1.5%

Performance checks	Vertical scale	Low limit	Test result	High limit
All models:				•
Channel 1 DC Offset Accuracy, 20 MHz BW, 50 Ω	1 mV/div 900 mV offset	895.0 mV		905.0 mV
	1 mV/div -900 mV offset	-905.0 mV		-895.0 mV
	2 mV/div 500 mV offset	497.0 mV		503.0 mV
	2 mV/div -500 mV offset	-503.0 mV		-497.0 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
hannel 1 C Offset	1 mV/div 900 mV offset	895.2 mV		904.8 mV
ccuracy, 0 MHz BW, MΩ	1 mV/div -900 mV offset	-904.8 mV		-895.2 mV
	2 mV/div 500 mV offset	497.1 mV		502.9 mV
	2 mV/div -500 mV offset	-502.9 mV		-497.1 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
	1.01 V/div 99.5 V offset	98.80 V		100.2 V
	1.01 V/div -99.5 V offset	-100.2 V		-98.80 V

Performance checks	Vertical scale	Low limit	Test result	High limit
Channel 2 DC Offset	1 mV/div 900 mV offset	895.0 mV		905.0 mV
Accuracy, 20 MHz BW, 50 Ω	1 mV/div -900 mV offset	-905.0 mV		-895.0 mV
	2 mV/div 500 mV offset	497.0 mV		503.0 mV
	2 mV/div -500 mV offset	-503.0 mV		-497.0 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
Channel 2 DC Offset	1 mV/div 900 mV offset	895.2 mV		904.8 mV
Accuracy, 20 MHz BW, 1 MΩ	1 mV/div -900 mV offset	-904.8 mV		-895.2 mV
	2 mV/div 500 mV offset	497.1 mV		502.9 mV
	2 mV/div -500 mV offset	-502.9 mV		-497.1 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
	1.01 V/div 99.5 V offset	98.80 V		100.2 V
	1.01 V/div -99.5 V offset	-100.2 V		-98.80 V

Performance checks	Vertical scale	Low limit	Test result	High limit
DPO4104, DPO4	1054, DPO4034, MS	04104, MSO4054	4, MSO4034:	3
Channel 3 DC Offset Accuracy	1 mV/div 900 mV offset	895.0 mV		905.0 mV
Accuracy, 20 MHz BW, 50 Ω	1 mV/div -900 mV offset	-905.0 mV		-895.0 mV
	2 mV/div 500 mV offset	497.0 mV		503.0 mV
	2 mV/div -500 mV offset	-503.0 mV		-497.0 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.04.5 V		-4.955 V
Channel 3 DC Offset	1 mV/div 900 mV offset	895.2 mV		904.8 mV
Accuracy, 20 MHz BW, 1 MΩ	1 mV/div -900 mV offset	-904.8 mV		-895.2 mV
	2 mV/div 500 mV offset	497.1 mV		502.9 mV
	2 mV/div -500 mV offset	-502.9 mV		-497.1 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
	1.01 V/div 99.5 V offset	98.80 V		100.2 V
	1.01 V/div -99.5 V offset	-100.2 V		-98.80 V

Performance			-	
checks	Vertical scale	Low limit	Test result	High limit
	1054, DPO4034, MS	-	i, MSO4034:	
Channel 4 DC Offset	1 mV/div 900 mV offset	895.0 mV		905.0 mV
Accuracy, 20 MHz BW, 50 Ω	1 mV/div -900 mV offset	-905.0 mV		-895.0 mV
	2 mV/div 500 mV offset	497.0 mV		503.0 mV
	2 mV/div -500 mV offset	-503.0 mV		-497.0 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.5 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
Channel 4 DC Offset	1 mV/div 900 mV offset	895.2 mV		904.8 mV
Accuracy, 20 MHz BW, 1 MΩ	1 mV/div -900 mV offset	-904.8 mV		-895.2 mV
	2 mV/div 500 mV offset	497.1 mV		502.9 mV
	2 mV/div -500 mV offset	-502.9 mV		-497.5 mV
	10 mV/div 500 mV offset	495.5 mV		504.5 mV
	10 mV/div -500 mV offset	-504.5 mV		-495.1 mV
	100 mV/div 5.0 V offset	4.955 V		5.045 V
	100 mV/div -5.0 V offset	-5.045 V		-4.955 V
	1.01 V/div 99.5 V offset	98.80 V		100.2 V
	1.01 V/div -99.5 V offset	-100.2 V		-98.80 V

Performance checks	Low limit	Test result	High limit
Sample Rate and Delay Time Accuracy	-1 divisions		+1 divisions

Auxiliary (Trigger) Output			
Trigger Output	High 1 M Ω	≥ 2.5 V	-
	Low 1 $M\Omega$	—	≤ 0.7 V
Trigger Output	High 50 Ω	≥ 1.0 V	-
	Low 50 Ω	—	≤ 0.25 V

Performa	nce checks: I	Digital Th	reshold Accu	ıracy, MSO4000	series only	
Digital channel	Threshold	V _s .	V _{s+}	Low limit	Test result $V_{sAvg} = (V_{s-} + V_{s+})/2$	High limit
D0	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D1	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D2	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D3	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D4	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D5	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D6	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D7	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V

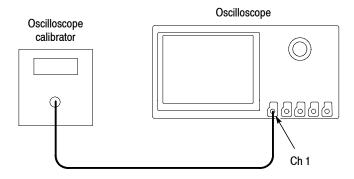
Digital channel	Threshold	V _s .	V _{s+}	Low limit	Test result $V_{sAvg} = (V_{s-} + V_{s+})/2$	High limit
D8	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D9	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D10	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D11	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D12	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D13	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D14	0 V			-0.1 V		0.1 V
	4 V			3.78 V		4.22 V
D15	0 V			-0.1 V		0.1 V
	4 V			3.78 V	1	4.22 V

Performance Verification Procedures

The following three conditions must be met prior to performing these procedures:

- 1. The oscilloscope must have been operating continuously for twenty (20) minutes in an environment that meets the operating range specifications for temperature and humidity.
- You must perform a signal path compensation (SPC). See Signal Path Compensation in the Tektronix 4000 Series Digital Phosphor Oscilloscopes User Manual. If the operating temperature changes by more than 10 °C (18 °F), you must perform the signal path compensation again.
- **3.** You must connect the oscilloscope and the test equipment to the same AC power circuit. Connect the oscilloscope and test instruments into a common power strip if you are unsure of the AC power circuit distribution. Connecting the oscilloscope and test instruments into separate AC power circuits can result in offset voltages between the equipment, which can invalidate the performance verification procedure.

The time required to complete the entire procedure is approximately one hour.

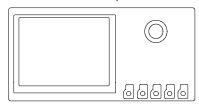

WARNING. Some procedures use hazardous voltages. To prevent electrical shock, always set voltage source outputs to 0 V before making or changing any interconnections.

- **Self Test** This procedure uses internal routines to verify that the oscilloscope functions and passes its internal self tests. No test equipment or hookups are required. Start the self test with these steps:
 - 1. Disconnect all probes and cables from the oscilloscope inputs.
 - **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
 - **3.** Push the **Utility** menu button.
 - 4. Push the Utility Page lower-bezel button, and turn the Multipurpose a knob to select Self Test.
 - 5. Push the Self Test lower-bezel button. The Loop X Times side-bezel menu will be set to Loop 1 Times.
 - 6. Push the OK Run Self Test side-bezel button.

- 7. Wait while the self test runs. When the self test completes, a dialog box displays the results of the self test.
- 8. Push the Menu Off button to clear the dialog box and Self Test menu.

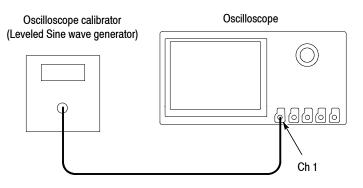
Check Input Impedance (Resistance) This test checks the Input Impedance.

1. Connect the output of the oscilloscope calibrator (for example, Fluke 9500) to the oscilloscope channel 1 input, as shown below.


- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the front-panel channel button for the oscilloscope channel that you are testing, as shown in the test record (for example, 1, 2, 3, or 4).
- 4. Confirm that the oscilloscope and calibrator impedances are both set to $1 \text{ M}\Omega$. The default **Impedance** setting is $1 \text{ M}\Omega$.
- 5. Turn the Vertical Scale knob to set the vertical scale, as shown in the test record (for example, 10 mV/div, 100 mV/div, 1 V/div).
- **6.** Measure the input resistance of the oscilloscope with the calibrator. Record this value in the test record.
- 7. Repeat steps 5 and 6 for each volt/division setting in the test record.
- 8. Change the oscilloscope and calibrator impedance to 50 Ω and repeat steps 5 through 7.
- **9.** Repeat steps 4 through 8 for each channel listed in the test record and relevant to the model of oscilloscope that you are testing, as shown in the test record (for example, **2**, **3**, or **4**).

Check DC Balance

This test checks the DC balance.


You do not need to connect the oscilloscope to any equipment to run this test.

Oscilloscope

- 1. Attach a 50 Ω terminator to the channel input of the oscilloscope being tested.
- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the front-panel channel button for the oscilloscope channel that you are testing, as shown in the test record (for example, 1, 2, 3, or 4).
- 4. Set the oscilloscope impedance to 50 Ω . Push the **Impedance** lower-bezel button to select **50** Ω .
- 5. Push the lower-bezel **Bandwidth** button and push the appropriate bandwidth side-bezel button for **20MHz**, **250MHz**, or **Full**, as given in the test record.
- 6. Turn the Horizontal Scale knob to 1 ms/division.
- 7. Turn the Vertical Scale knob to set the vertical scale, as shown in the test record (for example, 1 mV/div, 2 mV/div, 100 mV/div, 1 V/div).
- 8. Push the front-panel Acquire button.
- **9.** Push the **Mode** lower-bezel button, and then, if needed, push the **Average** side bezel button.
- **10.** If needed, adjust the number of averages to **16** with the **Multipurpose a** knob.
- 11. Push the Trigger Menu front-panel button.
- **12.** Push the **Source** lower-bezel button.
- **13.** Select the **AC Line** trigger source on the side menu. You do not need to connect an external signal to the oscilloscope for this DC Balance test.
- 14. Push the front-panel Wave Inspector Measure button.
- 15. Push the Select Measurement lower bezel button.

- **16.** Push the **more -** side bezel button as many times as needed to display the **Mean** measurement (for example, menu 6 of 7).
- 17. Push the Mean side-bezel button.
- **18.** View the mean measurement value in the display and enter that mean value as the test result in the test record.
- **19.** Repeat steps 7 through 18 for each volts/division value listed in the results table.
- **20.** Push the front-panel channel button, change the oscilloscope bandwidth (for example, 20 MHz, 250 MHz, or Full), and repeat steps 5 through 19.
- **21.** Change the oscilloscope impedance to 1 M Ω and repeat steps 5 through 20.
- **22.** Repeat steps 3 through 20 for each channel combination listed in the test record and relevant to your model of oscilloscope (for example, 1, 2, 3, or 4).
- **Check Bandwidth** This test checks the bandwidth at 50 Ω and 1 M Ω for each channel.
 - 1. Connect the output of the leveled sine wave generator (for example, Wavetek 9500) to the oscilloscope channel 1 input as shown below.

- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **3.** Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- 4. Set the calibrator to 50 Ω output impedance (50 Ω source impedance) and to generate a sine wave.
- 5. Set the oscilloscope impedance to 50 Ω . Push the **Impedance** lower-bezel button to select 50 Ω .

- 6. Turn the Vertical Scale knob to set the vertical scale, as shown in the test record (for example, 1 mV/div, 2 mV/div, 5 mV/div).
- 7. Push the front-panel Acquire button.
- **8.** Confirm that the mode is set to **Sample**. If not push the **Mode** lower-bezel button, and then push the **Sample** side bezel button.
- 9. Adjust the signal source to at least 8 vertical divisions at the selected vertical scale with a set frequency of 50 kHz. For example, at 5 mV/div, use a ≥ 40 mV_{p-p} signal, at 2 mV/div, use a ≥ 16 mV_{p-p} signal, at 1 mV/div, use a ≥ 8 mV_{p-p} signal. Use a sine wave for the signal source.
- 10. Turn the Horizontal Scale knob to $10 \,\mu$ s/division.
- **11.** Push the front-panel Wave Inspector **Measure** button, and the lower-bezel **Select Measurement** button.
- 12. Push the more side bezel button as many times as needed to display the **Pk-Pk** measurement (for example, menu 4 of 7).
- **13.** Push the **Pk-Pk** side-bezel button. This will provide you with a mean V_{p-p} of the signal. Call this reading V_{in-pp} .

Record the value of V_{in-pp} (for example, 816 mV) in the test record.

- 14. Turn the Horizontal Scale knob to 1 ns/division.
- **15.** Adjust the signal source to the maximum bandwidth frequency for the bandwidth and model desired, as shown in worksheet below. Measure V_{p-p} of the signal on the oscilloscope using statistics, as in the previous step, to get the mean V_{p-p} . Call this reading V_{bw-pp} .

Record the value of V_{bw-pp} in the test record.

NOTE. For more information on the contents of this worksheet, refer to the bandwidth specifications in Table 1-1 on page 1-3 and 1-4.

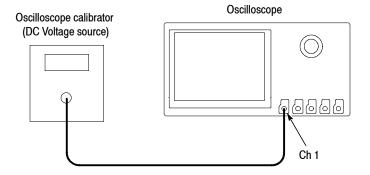
Impedance	Vertical Scale	Maximum bandwidth frequency
50 Ω	5 mV/div	1 GHz
50 Ω	2 mV/div	350 MHz
50 Ω	1 mV/div	200 MHz
1 M Ω	5 mV/div	380 MHz*
1 MΩ	2 mV/div	300 MHz
1 MΩ	1 mV/div	175 MHz
Model: DPO4054, M	SO4054	
50 Ω	5 mV/div	500 MHz
50 Ω	2 mV/div	350 MHz
50 Ω	1 mV/div	200 MHz
IMΩ	5 mV/div	380 MHz*
l MΩ	2 mV/div	300 MHz
IMΩ	1 mV/div	175 MHz
Model: DPO4034 ,D	PO4032, MSO4034, MSO4032	
50 Ω	5 mV/div	350 MHz
50 Ω	2 mV/div	350 MHz
50 Ω	1 mV/div	200 MHz
MΩ	5 mV/div	350 MHz
1 MΩ	2 mV/div	300 MHz
1 MΩ	1 mV/div	175 MHz

Table 2-1: Maximum Bandwidth Frequency worksheet

* For DPO4104, MSO4104, DPO4054, and MSO4054 bandwidth verification, use 380 MHz, rather than 500 MHz, on the 5 mV/div vertical scale due to an impedance mismatch between the calibrator and the oscilloscope. When the calibrator is set to 1 M Ω load, it has a Thevenin equivalent 25 Ω source impedance. Passing the test with a 380 MHz signal verifies 500 MHz performance with a P6139A probe on models DPO4104, MSO4104, DPO4054, and MSO4054.

16. Use the values of V_{bw-pp} and V_{in-pp} obtained above and stored in the test record to calculate the *Gain* at bandwidth with the following equation:

 $Gain = V_{bw-pp}/V_{in-pp}$.


To pass the performance measurement test, Gain should be ≥ 0.707 .

Enter Gain in the test record.

- **17.** Repeat steps 9 through 16 for the other oscilloscope volts/div settings listed in the test record.
- **18.** Set the calibrator to 1 M Ω output impedance to generate a sine wave.
- **19.** Push the channel button (1, 2, 3, or 4) for the same channel that you used in step 3.
- **20.** Change the oscilloscope impedance to 1 M Ω . Push the **Impedance** lower-bezel button to select **1 M\Omega**.
- **21.** Repeat steps 9 through 17.
- **22.** Repeat steps 3 through 21 for each channel combination listed in the test record and relevant to your model of oscilloscope (for example, 1, 2, 3, or 4).

Check DC Gain Accuracy This test checks the DC gain accuracy.

1. Connect the oscilloscope to a DC voltage source. If using the Wavetek 9500 calibrator, connect the calibrator head to the oscilloscope channel to test.

- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **3.** Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- 4. Confirm that the oscilloscope and calibrator impedances are both set to 50 Ω . Push the **Impedance** lower-bezel button to select **50** Ω .

- 5. Push the lower-bezel **Bandwidth** button.
- 6. Push the 20 MHz side-bezel button to select the bandwidth.
- 7. Push the front-panel Acquire button.
- 8. Push the Mode lower-bezel button, and push the Average side bezel button. The default number of averages is 16.
- **9.** Push the front-panel Wave Inspector **Measure** button, and the **Select Measurement** lower-bezel button.
- **10.** Push the **more -** side-bezel button as many times as needed to display the **Mean** measurement (for example, menu 6 of 7).
- 11. Push the Mean side-bezel button.
- 12. Push the Trigger Menu front-panel button.
- 13. Push the Source lower-bezel button.
- 14. Turn the Multipurpose a knob to select the AC Line as the trigger source.
- **15.** Turn the vertical **Scale** knob to the next setting to measure, as shown in Table 2-2.
- 16. Set the DC Voltage Source to $V_{negative}$ (see Table 2-2). Push the Measure front-panel button, push the Statistics lower-bezel button, and push Reset Statistics in the side-bezel menu. Enter the mean reading into Table 2-2 as $V_{negative-measured}$.
- 17. Set the DC Voltage Source to V_{positive} (see Table 2-2). Push Statistics in the lower-bezel menu and Reset Statistics in the side-bezel menu. Enter the mean reading into Table 2-2 as V_{positive-measured}.

 Table 2-2: Gain Expected worksheet

Oscilloscope Vertical Scale Setting	V _{diffExpected}	V _{negative}	V _{positive}	V _{negative-} measured	V _{positive-} measured	V _{diff}	Test Result (Gain Accuracy)
1 mV/div	9 mV	-4.5 mV	+4.5 mV				
2 mV/div	18 mV	-9 mV	+9 mV				
4.98 mV	44.82 mV	-22.41 mV	+22.41 mV				
5 mV	45 mV	-22.5 mV	+22.5 mV				
10 mV	90 mV	-45 mV	+45 mV				
20 mV	180 mV	-90 mV	+90 mV				
49.8 mV	448.2 mV	-224.1 mV	+224.1 mV				
50 mV	450 mV	-225 mV	+225 mV				
100 mV	900 mV	-450 mV	+450 mV				
200 mV	1800 mV	-900 mV	+900 mV				
500 mV	4900 mV	-2450 mV	+2450 mV				
1.0 V	9000 mV	-4500 mV	+4500 mV				

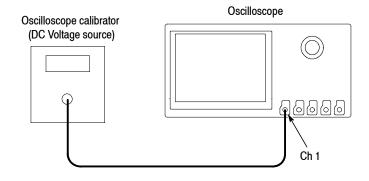
18. Calculate V_{diff} as follows:

 $V_{diff} = |V_{negative-measured} - V_{positive-measured}|$

Enter V_{diff} in Table 2-2.

19. Calculate *GainAccuracy* as follows:

 $GainAccuracy = ((V_{diff} - V_{diffExpected})/V_{diffExpected}) \times 100\%$

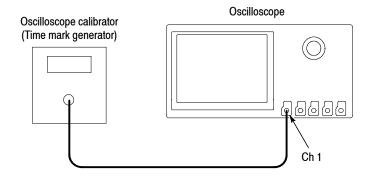

Write down GainAccuracy in Table 2-2 and in the test record.

- 20. Repeat steps 15 through 19 for each volts/division value in the test record.
- **21.** Change the oscilloscope impedance to 1 M Ω , and repeat steps 15 through 20.
- **22.** Repeat steps 3 through 21 for each channel of the oscilloscope that you want to check.

Check Offset Accuracy

This test checks the offset accuracy.

1. Connect the oscilloscope to a DC voltage source to run this test. If using the Wavetek calibrator as the DC voltage source, connect the calibrator head to the oscilloscope channel to test.

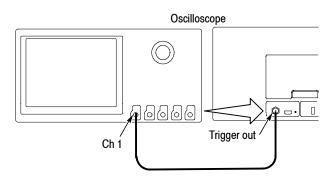

- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **3.** Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- 4. Confirm that the oscilloscope and calibrator impedances are both set to 50 Ω . Push the **Impedance** lower-bezel button to select **50** Ω .
- 5. Set the calibrator to the vertical offset value shown in the test record (for example, 900 mV for a 1 mV/div setting). Set the calibrator to the same impedance as you set for the oscilloscope.
- 6. Set the oscilloscope to the vertical offset value shown in the test record (for example, 900 mV for a 1 mV/div setting).
- 7. Turn the vertical **Scale** to match the value in the test record (for example, 1 mV/division).
- 8. Turn the Horizontal Scale knob to 1 ms/div.
- 9. Push the lower-bezel Bandwidth button.
- 10. Push the side-bezel button to select the bandwidth to 20 MHz.
- 11. Push the More lower-bezel button repeatedly to select Offset.
- **12.** Check that the vertical position is set to 0 divs. If not, turn the Vertical **Position** knob to set the position to 0 or push the appropriate **Set to 0 divs** button.
- 13. Push the front-panel Acquire button.

- **14.** Push the **Mode** lower-bezel button, and push the **Average** side bezel button. The default number of averages is **16**.
- 15. Push the front-panel Trigger Menu button.
- 16. Push the Source lower-bezel button.
- 17. Turn the Multipurpose a knob to select the AC Line as the trigger source.
- 18. Push the front-panel Wave Inspector Measure button.
- 19. Push the Select Measurement lower bezel button.
- **20.** Push the **more -** side bezel button as many times as needed to display the **Mean** measurement (for example, menu 6 of 7).
- **21.** Push the **Mean** side-bezel button. The mean value should appear in a measurement pane at the bottom of the display.
- **22.** Enter the measured value in the test record.
- 23. Repeat the procedure for each volts/division setting shown in the test record.
- **24.** Change the impedance to $1 \text{ M}\Omega$ and repeat steps 5 through 23.
- **25.** Repeat steps 3 through 24 for each channel of the oscilloscope that you want to check.

Check Sample Rate and Delay Time Accuracy

This test checks the sample rate and delay time accuracy (time base).

1. Connect the output of the time mark generator to the oscilloscope channel 1 input using a 50 Ω cable.

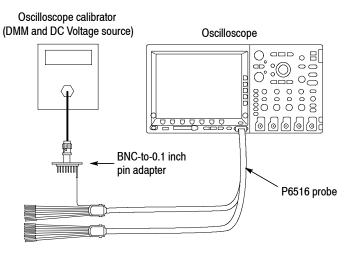

- 2. Set the time mark generator period to 80 ms. Use a time mark waveform with a fast rising edge.
- **3.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 4. Push the channel 1 button.
- 5. Set the impedance to 50 Ω . Push the **Impedance** lower-bezel button to select 50 Ω .
- 6. If adjustable, set the time mark amplitude to approximately $1 V_{p-p}$.
- 7. Set the Vertical SCALE to 500 mV.
- 8. Set the Horizontal SCALE to 20 ms.
- **9.** Adjust the Vertical **POSITION** knob to center the time mark signal on the screen.
- 10. Adjust the Trigger LEVEL knob as necessary for a triggered display.
- **11.** Adjust the Horizontal **POSITION** knob to move the trigger location to the center of the screen (50%).
- 12. Turn the Horizontal **POSITION** knob counterclockwise to set the delay to exactly **80 ms**.
- 13. Set the Horizontal Scale to 400 ns/div.

14. Compare the rising edge of the marker with the center horizontal graticule line. The rising edge should be within ± 1 divisions of center graticule. Enter the deviation in the test record.

NOTE. One division of displacement from graticule center corresponds to a 5 ppm time base error.

Check Trigger Out This test checks the Trigger Output.

1. Connect the Trigger Out signal from the rear of the instrument to the channel 1 input using a 50 Ω cable.


- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 3. Push the channel 1 button.
- 4. Set the oscilloscope impedance to 1 M Ω . The default **Impedance** setting is **1M\Omega**.
- 5. Set the horizontal to 4 uS/div and the vertical to 1 V/div.
- 6. Push the front-panel Wave Inspector Measure button.
- 7. Push the Select Measurement lower-bezel button.
- **8.** Push the **more -** side-bezel menu button repeatedly until the **Low** side-bezel button displays.
- 9. Push Low.

- **10.** If needed, push the **more -** side-bezel button repeatedly until the **High** side-bezel button displays.
- 11. Push High.
- **12.** Record the high and low measurements (for example, low = 200 mV and high = 3.52 V).
- 13. Repeat the procedure, using 50 Ω instead of 1 M Ω in step 4.

Check Digital Threshold Accuracy (MSO4000 only)

For the MSO4000 series only, this test checks the threshold accuracy of the digital channels. This procedure applies to digital channels D0 through D15, and to channel threshold values of 0 V and +4 V.

1. Connect the P6516 digital probe to the MSO4000 series instrument.

2. Connect one of the digital channels, such as D0, to the DC voltage source to run this test.

If using the Wavetek calibrator as the DC voltage source, connect the calibrator head to the digital channel to test. You will need a BNC-to-0.1 inch pin adapter to complete the connection. Be sure to connect the digital channel to the corresponding signal pin and to a ground pin on the adapter.

- **3.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 4. Push the front-panel **D15-D0** button.
- 5. Push the D15-D0 On/Off lower-bezel button.
- 6. Push the Turn On D7 D0 and the Turn On D15 D8 side-bezel buttons. The instrument will display the 16 digital channels.
- 7. Push the Thresholds lower-bezel button.

- 8. Turn the Multipurpose a knob and select the D15-D0 group.
- **9.** Before you change the threshold value, push the **Fine** front-panel button to turn off the fine adjustment and make adjusting the value quicker. Turn the **Multipurpose b** knob and set the value to **0.00 V** (0 V/div).

The thresholds are set for the 0 V threshold check. You need to record the test values in the row for 0 V in the test record for each digital channel.

- 10. Push the front-panel Trigger Menu button.
- **11.** Push the **Source** lower-bezel button, and turn **Multipurpose a** knob to select the appropriate channel, such as D0.

By default, the Type is set to Edge, Coupling is set to DC, Slope is set to Rising, Mode is set to Auto, and Level is set to match the threshold of the channel being tested.

12. Set the DC voltage source (Vs) to -400 mV. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level high, change the DC voltage source Vs to -500 mV.

13. Increment Vs by +10 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high, record the Vs value as V_{s-} in the 0 V row of the test record.

If the channel is a logic level low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 3 seconds, and check for a static logic high) until a value for V_{s-} is found.

- 14. Push the Slope lower-bezel button to change the slope to Falling.
- **15.** Set the DC voltage source (Vs) to +400 mV. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level low, change the DC voltage source Vs to +500 mV.

16. Decrement Vs by -10 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as V_{s+} in the 0 V row of the test record.

If the channel is a logic level high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 3 seconds, and check for a static logic low) until a value for V_{s+} is found.

17. Find the average, $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, continue with the procedure to test the channel at the +4 V threshold value.

- **18.** The remaining part of this procedure is for the +4 V threshold test. Push the front-panel **D15-D0** button. The **Thresholds** menu should display.
- **19.** Turn **Multipurpose a** knob and select the appropriate channel, such as D0.
- **20.** With the Fine front-panel button turned off, turn **Multipurpose b** knob and set the value to **4.00 V** (+4.0 V/div). To remove the menu from the display, push the front-panel **Menu Off** button.
- **21.** Set the DC voltage source (Vs) to +4.4 V. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level low, change the DC voltage source Vs to +4.5 V.

22. Decrement Vs by -10 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as V_{s+} in the 4 V row of the test record.

If the channel is a logic level high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 3 seconds, and check for a static logic low) until a value for V_{s+} is found.

- 23. Push the front-panel Trigger Menu button.
- **24.** Push the **Slope** lower-bezel button to change the slope to **Rising**.
- **25.** Set the DC voltage source (Vs) to +3.6 V. Wait 3 seconds. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level high, change the DC voltage source Vs to +3.5 V.

26. Increment Vs by +10 mV. Wait 3 seconds and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high, record the Vs value as V_{s-} in the 4 V row of the test record.

If the channel is a logic level low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 3 seconds, and check for a static logic high) until a value for V_{s-} is found.

27. Find the average, $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.

Compare the test result to the limits. If the result is between the limits, the channel passes the test.

28. Repeat the procedure starting with step 11 for each remaining digital channel, D1 through D15.

This completes the performance verification procedure.